
A Variational Bound of Teammate modeling
In order to make the teammate models anticipate intentions of
teammates, we propose to maximize the mutual information
between aj and zij . We draw the idea from variational in-
ference and derive a lower bound of this mutual information
term.
Theorem 1. Let I (zij ; aj | τi, dj) be the mutual information
between the action aj of agent j and the teammate model
zij from agent i to agent j conditioned on agent i’s local
information. The lower bound is given by

ED [−DKL (p (zij | τi, dj) ∥ qξ (zij | τi, aj , dj))] . (1)

Here, dj is the specific ID of teammate j in samples
(zij , aj , τi, dj), which are sampled from the replay buffer D,
and qξ(zij | τi, aj , dj) is the variational posterior estimator
with parameters ξ.

Proof. By a variational distribution qξ (zij | τi, aj , dj) pa-
rameterized by ξ, we have
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(2)

where the last inequality holds because of the non-negativity
of the KL divergence. The lower bound is tight when qξ(zij |
aj , τi, dj) approximates p(zij | τi, dj) well. We can rewrite
it as
I (zij ; aj | τi, dj)

≥Ezij ,aj ,τi,dj
[log qξ (zij | aj , τi, dj)]−

Ezij ,aj ,τi,dj
[log p (zij | τi, dj)]

=Ezij ,aj ,τi,dj
[log qξ (zij | aj , τi, dj)] +H (zij | τi, dj)

=Eaj ,τi,dj

[∫
p(zij |aj , τi, dj) log qξ(zij |aj , τi, dj)dzij

]
+

H (zij | τi, dj) .
(3)

As the teammate modeling encoder takes τi and dj as input,
the teammate model zij is independent from aj given the
local information. So we have
I (zij ; aj | τi, dj)

≥Eaj ,τi,dj

[ ∫
p(zij | aj , τi, dj) log qξ(zij | aj , τi, dj)−

p(zij | τi, dj) log p(zij | τi, dj)dzij
]

=Eaj ,τi,dj
[−DKL (p (zij | τi, dj) ∥ qξ (zij | τi, aj , dj))] ,

(4)

where aj , τi, and dj are computed from the replay buffer
D. Therefore, we use the replay buffer D to minimize the
expectation of KL divergence as maximizing the lower bound
of the mutual information.

B Details and Additional Results of SMAC
Our implementation is based on the PyMARL framework
(Rashid et al. 2018) with a StarCraft version of 2.4.6.2.69232,
which is always the default QMIX running version from
official SMAC release1. We adopt the default environment
setting from PyMARL, including the same observable con-
tent for each agent, the same enemy AI level, the same re-
ward function, etc. Every algorithm follows the same training
scheme during 2M timesteps. An episodic runner is used
to collect trajectories, and all algorithms are trained every
timestep after interacting with the environment. We apply
the default ϵ-greedy exploration to every algorithm, with ϵ
decaying from 1 to 0.05 in 50k timesteps, along with typical
training tricks of deep Q-learning like a target network and
double Q-learning. The target network is updated every 200
episodes, the same as settings in the original QMIX imple-
mentation. This setting may not provide optimal performance
in some super hard scenarios, as the insufficient exploration
and rare inadequate replay data will limit policy learning.
However, the same setting to QMIX guarantees the fairness
of comparisons.

We compare MAIC with baseline, including NDQ,
TMC, VBC, QMIX, and QPLEX in 13 SMAC scenarios
(Samvelyan et al. 2019) and other ablation and evaluation ex-
periments. The descriptions of all 13 scenarios can be found
in Table 1. For NDQ, QMIX, and QPLEX, we use the code
provided by the authors from their original paper with default
hyperparameters settings. For VBC and TMC, we implement
them according to their official code as their implementa-
tions do not support an alterable number of agents well. As
results of 4 of 13 scenarios have been shown above, we here
exhibit curves from the other nine scenarios in Figure 1. We
can observe that MAIC still outperforms other methods in
most scenarios while has a less promising performance in
some scenarios with fewer difficulties like 2s3z and 3s vs 5z.
QPLEX shows comparable performance in many easy and
less difficult scenarios but cannot learn an effective policy in
super hard scenarios.

C The Architecture, Infrastructure, and
Hyperparameters Choices of MAIC

As the common training and environment settings are listed
above and adopted for all algorithms, we here present specific
settings, including network architectures and hyperparame-
ters choices. The local agent network of MAIC shares the
same architecture with QMIX, which has a GRU cell with a
dimension of 64 to encode historical information, and two
fully connected layers to compute local Q-values. The team-
mate modeling architecture utilizes a multi-layer perceptron
(MLP) which has a hidden layer with 64 units as the encoder

1https://github.com/oxwhirl/smac
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(b) 5m vs 6m
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(d) 10m vs 12m
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(e) 2c vs 64zg
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(g) 5z vs 1ul
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(h) 3s vs 5z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

MAIC
NDQ
TMC
QMIX
QPLEX

(i) 1c3s5z

Figure 1: Average test win rates for MAIC, NDQ, TMC, QMIX, and QPLEX in 9 additional SMAC scenarios.

Table 1: Properties of 13 conducted SMAC scenarios.

Map Name Ally Units Enemy Units Type Difficulty
2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots Symmetric, Heterogeneous Easy
3s5z 3 Stalkers, 5 Zealots 3 Stalkers, 5 Zealots Symmetric, Heterogeneous Easy

1c3s5z
1 Colossus,
3 Stalkers,
5 Zealots

1 Colossus,
3 Stalkers,
5 Zealots

Symmetric, Heterogeneous Easy

5m vs 6m 5 Marines 6 Marines Asymmetric, Homogeneous Hard
3s vs 5z 3 Stalkers 5 Zealots Asymmetric, Homogeneous Hard

2c vs 64zg 2 Colossi 64 Zerglings Asymmetric, Homogeneous Hard
10m vs 12m 10 Marines 12 Marines Asymmetric, Homogeneous Super hard
27m vs 30m 27 Marines 30 Marines Asymmetric, Homogeneous Super hard
3c vs 100zg 3 Colossi 100 Zerglings Asymmetric, Homogeneous Super hard

5z vs 1ul 5 Zealots 1 Ultralisk Asymmetric, Homogeneous Super hard

1c3s5z vs 1c3s6z
1 Colossi,
3 Stalkers,
5 Zealots

1 Colossi,
3 Stalkers,
6 Zealots

Asymmetric, Heterogeneous Super hard

MMM2
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
2 Marauders,
8 Marines

Asymmetric, Heterogeneous Super hard

MMM3
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
2 Marauders,
9 Marines

Asymmetric, Heterogeneous Super hard



to calculate the parameters of teammate models represented
by multivariate Gaussian distributions with a dimension of
8. We implement the encoder to simultaneously output all
other teammates’ models with the input of an agent’s infor-
mation to enhance parallelization. The message generator
takes the agent’s local information and representation drawed
from teammate models into an MLP with one hidden layer,
and computes qi and kij with simple fully connected layers.
These two intermediate representations have a dimension of
32. The final message has the same dimension to the action
space to bias other agents’ policies in an incentive way.

We apply mixing networks to MAIC according to existing
MARL methods. The mixing network with simple additivity
from VDN (Sunehag et al. 2018) is used in two small cooper-
ative tasks, Level-Based Foraging and Hallway. The QMIX
mixing network (Rashid et al. 2018) is adopted in the com-
plex SMAC benchmark. We select the factor λm = 0.001
for the mutual information loss term of teammate modeling
and λc = 0.01 for the sparse regularization in all scenarios,
which are tuned from multiple different values. An RMSProp
optimizer is used with parameters including the learning rate
of 5×105, α = 0.99, and RMSProp ϵ = 1×105. The whole
framework is trained end-to-end with collected episodic data
on NVIDIA GeForce RTX 2080 Ti GPUs with a time cost
no more than 12 hours in Level-Based Foraging and Hallway,
and no more than 24 hours in SMAC scenarios.

D Value Decomposition Methods in MARL
Recently, value function factorization learning emerges as
a promising way in collaborative multi-agent systems (e.g.,
VDN (Sunehag et al. 2018), QMIX (Rashid et al. 2018), and
QPLEX (Wang et al. 2020)). These three methods all follow
the Individual-Global-Max (IGM) (Son et al. 2019) principle,
which asserts the consistency between joint and local greedy
action selections by the joint value function Qtot(τ ,a) and
individual value functions [Qi(τi, ai)]

n
i=1, respectively:

∀τ , argmax
a∈A

Qtot(τ ,a)

=

(
argmax

a1∈A
Q1 (τ1, a1) , . . . , argmax

an∈A
Qn (τn, an)

)
.

(5)

VDN utilizes the additivity to factorize the global value func-
tion QVDN

tot (τ ,a):

QVDN
tot (τ ,a) =

n∑
i=1

Qi (τi, ai) , (6)

while QMIX constrains the global value function
QQMIX

tot (τ ,a) with monotonicity property:

∀i ∈ N ,
∂QQMIX

tot (τ ,a)

∂Qi (τi, ai)
> 0. (7)

These two structures are sufficient conditions for the IGM
principle but not necessary. To achieve a complete IGM func-
tion class, QPLEX (Wang et al. 2020) uses a duplex dueling
network architecture by decomposing the global value func-

tion QQPLEX
tot (τ ,a) as:

QQPLEX
tot (τ ,a) = Vtot(τ ) +Atot(τ ,a)

=

n∑
i=1

Qi (τ , ai) +

n∑
i=1

(λi(τ ,a)− 1)Ai (τ , ai) ,
(8)

where λi(τ ,a) is the weight depending on the joint history
and joint action. The difference among the three methods
is in the mixing networks, with increasing representational
complexity. Our proposed framework MAIC follows the
value factorization learning paradigm but focuses on enhanc-
ing the representative ability of agents’ individual local net-
works. Different global mixing networks in VDN, QMIX,
and QPLEX can be freely integrated with MAIC.
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